For the first time, scientists have placed tiny motors inside living human cells and steered them magnetically.
The advance represents another step towards molecular machines that can be used, for example, to release drugs into specific locations within the body.
There is interest in the approach because it could enhance the benefits of drugs while minimising side effects.
The rocket-shaped metal particles were propelled using ultrasound pulses.
Materials scientist Prof Tom Mallouk, from Penn State University, and colleagues have published their research in the journal Angewandte Chemie International Edition.
Up until now, nanomotors have been studied only "in vitro" - in laboratory apparatus - but not in living human cells.
At low ultrasonic power, the nanomotors had little effect on these cells. But when the power was increased, the nanomotors surged into action, zooming around and bumping into organelles - structures within the cell that perform specific functions.
The nanomotors could be used as "egg beaters" to essentially homogenise the cell's contents, or act as battering rams to puncture the cell membrane.
"We might be able to use nanomotors to treat cancer and other diseases by mechanically manipulating cells from the inside," said Prof Mallouk.
In addition, he said: "Nanomotors could perform intracellular surgery and deliver drugs non-invasively to living tissues."
No comments:
Post a Comment